Towardsa General Architecturefor Secure Computing ©!

Ahmed Mujuthaba
amuj003@ec.auckland.ac.nz
for CompSci725SC, University of Auckland.
21 October 2005

Abstract

We look at two recently proposed architecturessémure computing based on changes to
the general purpose processor and system soft@ame of them protects the secrecy of
cryptographic keys and the integrity of cryptogradiinctions that uses these keys. The
other protects the secrecy of program code anderkldata in addition to protecting the
integrity of the computational results of theseguams. These two architectures are
compared to learn the similarities and differengeslved in providing secrecy and
integrity protection to two different elements. Vééso look at the advantages and
disadvantages of the two architectures. We themeaddthe question of how general
these architectures are.

1. Introduction

Secrecy, Integrity, Availability and Accountabilihave been identified as the
four major needs of users with regards to infororatiecurity [03]. A number of
different approaches have been used in tryingttefgane or more of these needs. These
include hardware-only, software-only and combinpgdraaches. A particularly
successful approach that addresses the secreagtagdty needs has been secure co-
processors. However secure co-processors are tiysed mainly by the military and
large financial institutes.

Even though the stakes may be lower outside ofanyliand finance industry
when it comes to information security the needstecuring information is there. Two
recent proposals for addressing the secrecy aagdrityt needs build on the secure co-
processor idea to provide similar functionality éme in general purpose processor based
computer systems. Both of these do not includejarooessor but extend the general
purpose processor along with some changes to sysiftware to achieve the goal of
providing secrecy and integrity.

Each of these chooses a different element for wéechecy is provided and
integrity of computations using this secret elememguaranteed. In [01], the authors
describe an architecture for protecting the secoécyyptographic keys and providing
integrity of cryptographic functions using thesgen contrast to this, [02] proposes an
architecture for keeping secret program code (amdd algorithm) and related data and
guaranteeing the integrity of the results fromghagram. Even though at first glance it
seems the two architectures are solving two vdfgréint problems a closer look reveals
the similarity of the two tasks and the solutionsvided in the two papers. In this paper
we study these two architectures as a way of fopdunt the issues involved in providing
secrecy for a chosen element and guaranteeingiilyte§ computations involving the
secret element. For the rest of the paper “SP4actre” will refer to the one proposed
in [01] and “Platte-architecture” will refer to tlome described in [02].

This paper is organized as follows. In Section Zw@pare and contrast the main
components of the two architectures. Section 3daikhe advantages and disadvantages
of each architecture compared to the other andcalsonon to both. In Section 4 we
look at whether each of the architectures can prole secrecy of the element chosen by
the other architecture, with a minimum of chandesloing this we learn how general
each of the architecture is and also get a glingp$iee issues involved in designing an
architecture that is general enough to protecséueecy of any element chosen by the
user and ensure the integrity of computations winglthe secret. This section is

followed by the conclusion.

2. Comparison of the two architectures

For the purpose of comparing and contrasting tleearghitectures we’ll look at
the following aspects: key management, progranmeptiain, data protection, register
protection, interrupt handling, operating systerarges, and changes to programs and

program development.

2.1 Key Management
The need for key management in SP-architecturbvsas since its aim is to

protect the secrecy of cryptographic keys. Evenghat’'s less obvious the Platte-

architecture also need to deal with key managesieae it keeps programs and related
data secret by encrypting them.

The SP-architecture uses the concept of a key caich is a tree structure
where the keys that the user uses are at the delasof the tree and is encrypted with the
key of its parent node. This allows the key chaibe stored in insecure locations
because only the key at the root of the tree neels kept secret. This root key is called
“User Master Key” and it unique to each user argkiserated with secrets only the user
posses. SP-architecture as described in [01] asstimsesecret to be a password,
although the authors acknowledge that other segrgdgie to users can be used. In
addition there is a “Device Master Key” which igated when the Trusted Software
Module (TSM) is installed on the machine and isesddn a special secure register in the
processor for the life time of TSM. The Device Madey is used for program, memory
and register protection as discussed in the foligvgections. Only the processor has
access to the Device Master Key and it cannot besased by any instruction. Since the
Device Master Key is installed during TSM instatdatthere are no factory installed
secrets in the SP-architecture.

In the Platte-architecture there is a factory getbpublic/private key pair. The
private key of which is stored in the RSA unit bétprocessor. The public key signed by
the manufacturer is made available to the pubbftvw&re vendors who want to protect
the secrecy of their program code encrypt it wieeret key which is in turn encrypted
with the public key of the target machine. Wheneherypted program is loaded its
encrypted secret key is loaded into the procesharhwdecrypts it using its private key
and stores the program secret key in a speciatezgialled “keystore” for the duration
of the program execution. This key is then usedettrypt the program code for
execution and also for program and memory protea®described in the following
sections. Both the private key in the RSA unit #relkey in the keystore are not
accessible using any instructions and are usedlgnlige processor internally. All
together these allow for a program to be targeiexpéecific processors with the guarantee

that no other processor can execute the code.

The approaches to key management taken by thertlhidextures are quite
different, and this leads each of them having prigseand/or capabilities that the other

doesn’t. The advantages and disadvantages of énesbscussed in Section 3.1.

2.2 Program Protection

The goal of the Platte-architecture is protecthmgsecrecy and integrity of certain
programs and hence it is obvious that it needs amasins to do this. SP-architecture
with its goal of protecting cryptographic keys dhd integrity of computations using
them, it is not immediately obvious that it needsgpam protection. However to ensure
key materials are not leaked out and to maintariritegrity of cryptographic functions
that uses the keys, SP-architecture uses a Tr8stiddare Module (TSM). The integrity
of the TSM is protected using the program protectiechanisms.

SP-architecture ensures the integrity of the TSNh&shing each cache line size
segments of code using the Device Master Key arrthgtthe hash values inline with the
code. Whenever TSM instructions are fetched inéoctiiche the processor recomputes
the hash and compares it with the inline hash. Hewthis only guarantees that the code
itself has not been modified. It does not ensuedrntegrity of the result of running the
code. To do this any memory data that the prograes during its run time should be
protected against modification. Also to reducertble of the key materials leaking out
the memory used to store data by the program nauptdwvented from being observed.
How this is done is described in the following g@tion data protection. SP-architecture
does not provide secrecy protection for the TSMweMer it is easy to extend the
architecture to provide this as discussed in Seetiolt must be noted that SP-
architecture provides program protection only ® T1$M and not to any other program.

The Platte-architecture provides both confiderttiaind integrity protection to
programs that are specially designed to take adgertf these features. Other programs
run as normal without any of these protections. Jpexcial programs are encrypted and
hashed at the time of distribution, using a symimetcret key which is in turn encrypted
using the processor’s public key and included withprogram. Unlike the SP-
architecture the hash values are not includedenkiith the code. During the calculation

of hash values the memory address of the lineassé in a way that makes each

location unique. The hashes are loaded into a aeparemory area when the program is
loaded. When a cache line is brought into on-chighe from main memory the
processor checks the integrity of the cache lineddgulating the hash value and
comparing it to the stored value. If the values'domatch the program is terminated
immediately. If there is a match then the cache iéndecrypted and executed. Hence
except for the encryption/decryption the conceingilar to that of the SP-architecture.
As mentioned before we need data protection int@acdio program protection to ensure

the integrity of the computation.

2.3 Data Protection

Both architectures use the same method to enstagudatection, even though the
exact details defer. We won't go into the detasept to point out some interesting
differences.

Both architectures encrypt and hash any cache lisegd by the protected
program when the cache line is written back to nma@mory. The virtual memory
address of the cache lines are included in theilzdion hashes in a way that the same
content in different memory locations gets différeash values. This allows the
processor to detect any replay attacks. The SRtactire uses the Device Master Key
for encrypting and hashing while the Platte-aratitee uses the program'’s secret key
from the keystore for these. When a cache lineasdht into cache, its hash is calculated
by the processor and compared with the stored hash.

One difference between the two architectures isdinae the SP-architecture uses
hashed program cache lines that are not encryptiedata cache lines that are both
hashed and encrypted, it needs some mechanisrartvfydinstruction and data cache
lines in the unified level-2 cache. SP-architecuses a tag to identify the data cache
lines in the level-2 cache. Platte-architecturesdus need this because both program and
data cache lines get encrypted and hashed.

Another important difference is that Platte-arattilee uses a hash tree where the
leaves of the tree are data and instruction canbenbshes and the parent nodes store the
hash values of the children. Finally the root healne is stored in a special encrypted

cache line in the processor. This scheme prevawtsecines and their respective hash

values from a previous execution of the same prodraing used in a replay attack. SP-
architecture does not discuss in detail the meithosks for data hashes, instead
suggesting that there are several possible implatiens. However the architecture does
not include a special register for the storagénefrbot hash, suggesting the authors have
not considered the hash tree. Hence the SP-arthréedoes not provide protection
against replay attacks using data and hashes frewiops runs of the same program,
where the replayed cache lines have the same hatlgless as the cache line being

replaced.

2.4 Register Protection

Since in the SP-architecture the processor regiater used only by the current
running process, register protection is only neeslleen an interrupt occurs. This is
discussed in detail in the next section. In conti@his the Platte-architecture is based
on the SPARC processor which uses register windavese each process uses a window
of registers from the register set. This means e@sins have to be implemented to
prevent unauthorized register access by other psese We omit the details of how this
is done. However it is worth noting that this addedplexity can be avoided by using a

processor that do not use register windows.

2.5 Interrupt Handling

In SP-architecture when an interrupt occurs thegssor first encrypts all the
registers using the Device Master Key, treatingnladl as one block. The encrypted
contents are then stored back in the registersash kalue is calculated over all of the
encrypted register contents. This hash value is shared in a special register called the
Interrupt Hash register. Control is then passatiédOperating System to handle the
interrupt. When the protected program (TSM) agagumes execution, the processor
first computes the hash over the restored registetents and compares it with the value
in the Interrupt Hash register. If they do not rhateen the program is terminated. If they
match the register values are decrypted and execatintinues. Since the all the
registers are encrypted and hashed as one blodotheeplay that will be successful is

one which is exactly the same register contentahich case it won’'t cause any

problem. To enable the processor to identify arrelbiack to the TSM the return address
is stored in a special register before passingrabtat OS. On a return this address is
checked.

The Platte-architecture has a completely diffeegaproach to interrupt handling.
This is partly due to it being based on the SPARitecture (see Section 2.4).
Interrupts that occur while executing a protectesjpam are handled by a separate set of
interrupt handlers. When the current executing @gis not a protected program the
interrupts are handled by the normal interrupt lensd Interrupt handlers for the
protected programs has the beginning and end abthiene as protected regions which
are entered and leaved using special instruct®efre leaving the protected region at
the beginning the interrupt number and frame poiststored in a special protected
memory area. After the interrupt routine does itknibenters the protected region at the
end of the routine at which point the interrupt tiemand frame pointer is compared
with the stored values. The protected program resuonly if they match. [02] does not
have any discussion of encrypting and hashing tergiglues when they need to be
stored on the stack.

Refer to Sections 3.2 and 3.3 for discussions wiesissues arising from the two

approaches to interrupt handling.

2.6 Operating System Changes

Both architectures require changes to the Oper&ysgem in addition to the
changes to interrupt handling discussed aboveotin tases the way the protected
programs are loaded is different to loading of rarprograms due to the encrypting and
hashing of data. Also in the case of the Platt&itecture the loader needs to be able to
identify protected programs and pass the encryg¢ecet key associated with the
program to the processor’'s RSA unit.

The way the OS handles paging also need to be rddd ensure that data and
their respective hash values are paged in andgather despite them sitting in different
memory areas. This point is made explicit in [0dthough this is not mentioned

explicitly it is clear this would help in the SPehitecture as well.

2.7 Changesto programs and program development

Since the SP-architecture regards the OS as ctehpietrusted and the Platte-
architecture do not trust the OS except for cenpairts of interrupt handlers, both [01]
and [02] recommends that the protected progranssdtieally linked. In addition [01]
recommends the memory to be used for data by tiv FeSstatically allocated during
compile time. The Platte-architecture allows dyramemory allocation for protected
programs during run time. However [02] recommeras the program itself include
checks to verify the virtual addresses returnethbyOS after analloc call. The Platte-
architectures also specifies that libraries be fremito allow programs to request
encrypted, protected or unprotected memory. Anallfirthe protected program must be
encrypted and hashed in the case of Platte-artinigeafter compilation and linking. In

the SP-architecture the hashing of TSM occurs dunatallation.

2.8 Securel/O

The SP-architecture requires secure 1/O for séctnansferring the password
(see Section 2.1) that is used to generate theNaster Key, to the processor. The
authors propose encrypting the data between theoeegt and the secure /O unit of the
processor when the user presses a button befaergnthe password. However which
key is used for this encryption process and hovk#yeis shared between the keyboard
and processor is not mentioned at all.

The Platte-architecture does not require the @istaring any passwords and
require all protected programs be distributed whthkey used to encrypt them (see
Section 2.1). Hence it has no mechanisms for séf@rand it is not discussed in [02].

Issues relating to secure I/O implementation ex$fP-architecture and the
disadvantages of Platte-architecture not includimcure 1/0O are further discussed in
Section 3.4.

3. Advantages and Disadvantages

In this section we look at the advantages and daadges of the two

architectures relative to each other and also comimdoth.

3.1 Factory installed device secret vs. no factory installed secret

As detailed in Section 2.1, the SP-architecturesdwt include a factory installed
device secret. In contrast the Platte-architedtasethe private key of a public private
key pair installed in the processor by the manufact

The authors of [01] claim that having a factorstalled key gives rise to privacy
concerns and also limits the portability of trustfactory installed key (which has to be
unique for it to work) does indeed pose privacybtems in that other parties may use it
to identify the owner of a machine. The outcry otber Pentium 11l Processor Serial
Number (PSN) [04] illustrates the general publgtance on this type of issue. The
second claim by the authors that a factory indaldlevice secret limits portability of trust
has no merit at all. The reason is that in the ©RH&cture there is a device secret (the
Device Master Key) even if it is not factory ingal. The Device Master Key is used by
the processor to encrypt and/or hash the TSM atadudzd by it. The portable trust in
SP-architecture derives from the User Master Kegndé¢ even if the Device Master Key
was replaced by a factory installed device keynen$P-architecture the portability of
user key chain will not be affected at all.

The Platte-architecture with its factory instalf@d/ate key in the device and the
manufacturer signed public key available to pubffers more benefits compared to the
SP-architecture. The most obvious benefits areioveed in [02]. One is software
distributors are able to send the secret key wiiltivthey encrypted the program along
with the program by encrypting using the public lkéyhe processor. The other is that
using this software distributors are able to cdritve specific machines their program
will run. This maybe desirable in some distributednputing applications. Since the SP-
architecture does not run protected programs akiaer the TSM the above mentioned
advantages do not apply to it. However there ishardoenefit of using the private/public
device key scheme that is relevant to both ardhites. That is, it will enable the
processor to authenticate itself to a user who asesartcard. This is highly desirable in
the case of SP-architecture, since one of its @rnesmake user trust portable and in such
a setting the user would want to know if it is af@Bcessor that she is giving her

password to.

3.2 Untrusted OSvs. Partly trusted OS

The SP-architecture considers the OS to be conpletérusted and hence do not
rely on it for any of the security mechanisms. Thas the clear advantage of keeping the
protected elements safe in the face of an OS campeo

Due to how it handles interrupts, the Platte-dechire has to partly trust the OS.
The only parts of the OS that are trusted are icep@rts of interrupt handling routines.
However this exposes the Platte-architecture teemsks in the face of an attack that
compromises the OS.

3.3 Running multiple protected programs

The SP-architecture was designed to run only B &s the protected program.
The way it handles interrupts using the return eslslregister (see Section 2.5) means
only one protected program can be supported evamaltiprogrammed environment.

In addition the processor includes special flagsnsure that only one copy of the TSM
is running at a time. These are not disadvantageswonsidering the purpose for which
the SP-architecture was intended to use. Howeesethre disadvantages if we consider
extending the architecture.

On the other hand the Platte-architecture caranymprogram designed to take
advantage of it, as a protected program. Howekieugh never explicitly or implicitly
mentioned in [02] it can not run multiple protecf@dgrams at the same time. This is due
to the architecture not having any mechanism tallegkey changes in the keystore
during context switches. This is a disadvantageesihe architecture otherwise allows
multiprogramming, and it maybe desirable to runtipld protected programs at the

same time.

3.4 Securel/O

As mentioned in Section 2.8 the method for setf@eyiven in [01] omits very
important details about sharing keys between tiybdard and the processor. This
highlights the difficulty of implementing secur®©l/However secure I/O is essential for
the working of the SP-architecture.

The lack of secure I/O in the Platte-architectlisallows it from being used in

applications in which secure interaction with ussesneeded such as the user key

management scheme proposed to be used with thecBiReature in [01]. This is a clear
disadvantage.

4. A General Secure Computing Architecture

We know look at the problem of making each of trehiectures protect the
secret the other was designed to protect. The majose of looking at this problem is
to get some idea of how general these architecargesThis in turn helps us understand
the issues involved in designing architectures dimatto solve multiple security needs of
users.

From the comparisons in Section 3 and the discnssioSection 4 it is clear that
the SP-architecture cannot provide protection tgmams other than the TSM. It
provides integrity protection to the TSM but does provide secrecy protection.
However it can be easily modified to provide segnetection as well by encrypting the
TSM using the Device Master Key and decryptingdaehe lines after a successful hash
match. The changes required to allow this architecto provide protection to programs
other than the TSM, are quite extensive. One n&jange needed is changing of the
device key to a factory installed private/publig kmir as discussed in Section 3.1.
Without this change distributors of the protectealgpams cannot distribute the key with
which the program is encrypted. Hence some majangés to the design of the
architecture are necessary in order to make il@tto handle the task the Platte-
architecture solves. That is providing secrecy iatebrity protection of programs.

On the other hand the changes to the Platte-actiiitethat is necessary in order
for it to support the key chain concept and thegqmiion of the key chain, seems not so
extensive. The TSM can be run as another protgrtegtam in the Platte-architecture.
The only changes required are adding a registstote the User Master Key and the
addition of secure 1/0. However as we have sean f8ection 3.4 implementing secure
I/O is not so easy. Nevertheless implementing €t@r in the Platte-architecture would
be no different to implementing it in the SP-arebitire.

It is obvious from the above discussion that tlat@architecture can be
extended easily to add support to provide secredyirgtegrity protection to elements

other than programs. Hence it seems possible oryha least to design an architecture

that is general enough to provide solutions toedéht security needs of users. However
as we noted at the start, these architecturespoolyde secrecy and integrity protection.
The other two categories of security needs idewtiin [03], availability and
accountability are not addressed. Hence to betalgeovide a truly general architecture
for secure computing, further work needs to be donecorporate availability and

accountability into these architectures.

5. Conclusion

We have seen by looking at the two architecturasis possible to provide
solutions to information security needs based oallsthanges to the general purpose
processor and system software. We have also saeit ipossible to design a secure
computing architecture that provides secrecy atedjiity protection to multiple and
different elements that require them. However adity and accountability needs to be
incorporated into future designs in order to fudtydress the security needs of users.
Further work is also needed in the area of se¢@ras it is an important element in

maintaining security in interactive computing tasks

6. References

[01] Lee, R.B., Kwan, P.C.S., McGregor, J.P., DkinsJ., Zhenghong Wang,
"Architecture for Protecting Critical Secrets indvthprocessors”, ISCA '05,
Proceedings of the 32nd International Symposiur@omputer Architecture, 2005,
Pages:2 - 13, June 2005.

[02] Platte, J., Naroska, E., "A combined hardwad software architecture for secure
computing”, Conference On Computing Frontiers, Beodings of the 2nd
conference on Computing frontiers, Ischia, 1talgSSION: Track 13: special
purpose architectures, Pages: 280 - 288, May 2005.

[03] Lampson, B.W., "Computer security in the reakld", Computer, Volume 37,
Issue 6,Pages:37 - 46, June 2004.

[04] http://www.sims.berkeley.edu/courses/is224/696upG/psn_wp.html. Accessed on
20th October 2005.

[05] Title based on suggestion by Clark Thomborson.

